Distance in a shootem up 2D
Am I going about this in the right way? I am going to use the distance formula to determine the distance on the enemies and the player in my game.
d = sqrt((x1x2)^2 + (y1y2)^2) or is their someother way or faster way to do it? Thanks.
d = sqrt((x1x2)^2 + (y1y2)^2) or is their someother way or faster way to do it? Thanks.
Quote:Originally posted by Mars_999
Am I going about this in the right way? I am going to use the distance formula to determine the distance on the enemies and the player in my game.
d = sqrt((x1x2)^2 + (y1y2)^2) or is their someother way or faster way to do it? Thanks.
Yes, that is correct. This is the fastest way (that I know of), unless your want to merely compare distances where you can write something like:
if d^2 > (x1x2)^2+(y1y2)^2
But obviously writing d^2 = ... will give you an l value error.
That's the only way to get an accurate result.
If you don't need accuracy, there may be faster approximations.
If you don't need to know the distance, only to compare distances, you don't need the square root  comparing the squares will give the same result.
If you don't need accuracy, there may be faster approximations.
If you don't need to know the distance, only to compare distances, you don't need the square root  comparing the squares will give the same result.
The most common approximation is a lookup table, possibly with interpolation if you want to trade some speed for a bit more accuracy.
Shikari will nag you about using PPC instructions designed for square root acceleration, but I have no experience with this.
Shikari will nag you about using PPC instructions designed for square root acceleration, but I have no experience with this.
The sqrtrelated PowerPC instructions that are available on Macs are only for reciprocal square roots, so they're seldom any use for distance formulae.
[SOURCECODE]
float fast_sqrt (register float arg)
{
// Can replace with slower return std::sqrt(arg);
register float result;
if (arg == 0.0) return 0.0;
asm {
frsqrte result,arg // Calculate Square root
}
// Newton Rhapson iterations.
result = result + 0.5 * result * (1.0  arg * result * result);
result = result + 0.5 * result * (1.0  arg * result * result);
return result * arg;
}
[/SOURCECODE]
As far as I know this was written by Tod Baudais. It runs several times faster than sqrt and gives the same result.
float fast_sqrt (register float arg)
{
// Can replace with slower return std::sqrt(arg);
register float result;
if (arg == 0.0) return 0.0;
asm {
frsqrte result,arg // Calculate Square root
}
// Newton Rhapson iterations.
result = result + 0.5 * result * (1.0  arg * result * result);
result = result + 0.5 * result * (1.0  arg * result * result);
return result * arg;
}
[/SOURCECODE]
As far as I know this was written by Tod Baudais. It runs several times faster than sqrt and gives the same result.
Quote:Originally posted by OneSadCookie
The sqrtrelated PowerPC instructions that are available on Macs are only for reciprocal square roots, so they're seldom any use for distance formulae.
Confused on what your getting at here? The sqrt() math.h function is not totally accurate? Or am I missing the point here? Square root is a square root unless its a cube root? :sorry:
The problem is that sqrt() is *slow*. What's being discussed here is ways to get a slightly less accurate result much faster.
Quote:Originally posted by Mark Levin
The problem is that sqrt() is *slow*. What's being discussed here is ways to get a slightly less accurate result much faster.
Ok, yes I agree with that sqrt() is slow. Now everything is clear!!
Quote:Originally posted by Mars_999
Confused on what your getting at here? The sqrt() math.h function is not totally accurate? Or am I missing the point here? Square root is a square root unless its a cube root? :sorry:
I would assume that reciprocal square roots would have something to do with taking the square root of numbers such as 1/5 (.2)...
But don't trust me on that...
Did you ever wonder why we had to run for shelter when the promise of a brave new world unfurled beneath the clear blue sky?
no, frsqrte returns an estimate of 1/√x.
Ok, in that case 1/frsqrte(x) would be about equal to sqrt(x)...Right?
Steven
Steven
Did you ever wonder why we had to run for shelter when the promise of a brave new world unfurled beneath the clear blue sky?
Um, yeah, but frsqrte isn't particularly accurate, and division and loading floating point constants is pretty slow. That's why the code David posted is done the way it is.
It uses frsqrte to get an approximation to the right answer, two steps of NewtonRaphson to make that approximation more accurate (probably to about the precision of a float?), and then does x ⋅ 1/√x (≈ √x) to turn the approximation to the inverse into something more useful. Multiplication is much faster than division, and since x is already in a register, there's no need to load any floating point constants.
It uses frsqrte to get an approximation to the right answer, two steps of NewtonRaphson to make that approximation more accurate (probably to about the precision of a float?), and then does x ⋅ 1/√x (≈ √x) to turn the approximation to the inverse into something more useful. Multiplication is much faster than division, and since x is already in a register, there's no need to load any floating point constants.
Quote:Originally posted by David
[SOURCECODE]
float fast_sqrt (register float arg)
{
<..snip..>
}
[/SOURCECODE]
As far as I know this was written by Tod Baudais. It runs several times faster than sqrt and gives the same result.
I have been trying for some time to get frsqrte working inside project builder. I've done some reading, and gotten this function to compile; but it then produces the following error:
{standard input}:1215:instruction is optional for the PowerPC (not allowed without force_cpusubtype_ALL option)
the code I've been mucking around with is this:
[SOURCECODE]
float qsqrt(register float arg)
{
register float res;
if (arg == 0.0f)
return 0.0f;
__asm__ __volatile__ ("frsqrte %0, %1" : "=f" (res) : "f" (arg));
res += 0.5f * res * (1.0f  arg * res * res);
res += 0.5f * res * (1.0f  arg * res * res);
return res * arg;
}
[/SOURCECODE]
Any help would this would be really useful to me, as a lot of my vector normalisation doesn't require absolute precision.
If you #include <ppc_intrinsics.h>, you get a pair of macros __frsqrte and __frsqrtes which act like functions but expand out to the assembly. Much easier
As it says, you can't rely on frsqrte being available on the PowerPC, although it is on all* PowerPCs Apple has ever used. To placate the compiler, you'll need to add the option it suggests to your OTHER_CFLAGS in the target settings.
*except maybe like the 601 or something...
Note that if you're using this for vector normalization, you'll be dividing by the result of the square root, so you might as well multiply by the inverse of the square root, and avoid a multiply and a divide...
As it says, you can't rely on frsqrte being available on the PowerPC, although it is on all* PowerPCs Apple has ever used. To placate the compiler, you'll need to add the option it suggests to your OTHER_CFLAGS in the target settings.
*except maybe like the 601 or something...
Note that if you're using this for vector normalization, you'll be dividing by the result of the square root, so you might as well multiply by the inverse of the square root, and avoid a multiply and a divide...
Possibly Related Threads...
Thread:  Author  Replies:  Views:  Last Post  
Fast Distance formula?  mikey  11  11,322 
Nov 23, 2009 10:43 AM Last Post: mikey 

calculating X and Y coordinates w/ an angle and distance  ferum  13  19,717 
Jun 25, 2008 10:53 PM Last Post: rosenth 

Signed distance fields  imikedaman  16  12,822 
Jul 20, 2007 07:13 PM Last Post: imikedaman 

Speed distance velocity and other headaches  Thinker  6  5,239 
Jul 3, 2003 09:55 AM Last Post: Thinker 